Machine Learning is the science (and art) of programming computers so they can
learn from data.

Here is a slightly more general definition:

Machine Learning is the field of study that gives computers the ability to learn
without being explicitly programmed.

—Arthur Samuel, 1959

And a more engineering-oriented one:

A computer program is said to learn from experience E with respect to some task T
and some performance measure P, if its performance on T, as measured by P, improves
with experience E.

—Tom Mitchell, 1997
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Figure 1-2. Machine Learning approach
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Figure 1-3. Automatically adapting to change
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Figure 1-4. Machine Learning can help humans learn




ML Types/classification

* Whether or not they are trained with human supervision (supervised, unsupervised,
semisupervised, and Reinforcement Learning)

» Whether or not they can learn incrementally on the fly (online versus batch
learning)

» Whether they work by simply comparing new data points to known data points,
or instead detect patterns in the training data and build a predictive model, much
like scientists do (instance-based versus model-based learning)
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Figure 1-5. A labeled training set for supervised learning (e.g., spam classification)
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Figure 1-7. An unlabeled training set for unsupervised learning
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Figure 1-10. Anomaly detection
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Figure 1-11. Semisupervised learning
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Figure 1-13. Online learning
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Figure 1-14. Using online learning to handle huge datasets
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Figure 1-15. Instance-based learning
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Figure 1-17. Do you see a trend here?
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Fioure 1-18. A few possible linear models




Figure 1-19. The linear model that fits the training data best




The Unreasonable Effectiveness of Data

In a famous paper published in 2001, Microsoft researchers Michele Banko and Eric
Brill showed that very different Machine Learning algorithms, including fairly simple
ones, performed almost identically well on a complex problem of natural language
disambiguation® once they were given enough data (as you can see in Figure 1-20).
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Figure 1-20. The importance of data versus algorithms’
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Figure 1-21. A more representative training sample
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Figure 1-22. Overfitting the training data
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Figure 1-23. Regularization reduces the risk of overfitting



